Biological monitoring for exposure to volatile organic compounds (VOCs) (IUPAC Recommendations 2000)

Author:

Heinrich-Ramm R.1,Jakubowski M.2,Heinzow B.3,Christensen J. Molin4,Olsen E.4,Hertel O.5

Affiliation:

1. 1Central Institute of Occupational Health, Adolph-Schönfelder-Str. 5, D-22083 Hamburg, Germany

2. 2Institute of Occupational Medicine, POB 199, 8 Sw. Teresy Str., PL-90 950 Lódz, Poland

3. 3State Institute of Nature and Environment, Hamburger Chaussee 25, D-24220 Flintbek, Germany

4. 4National Institute of Occupational Health, Lersø Park Allè 105, DK-2100 Copenhagen Ø, Denmark

5. 5National Environmental Research Institute, Frederiksborg vej 399, P.O. Box 358, DK-4000 Roskilde, Denmark

Abstract

This paper deals with the appropriate application of biological monitoring (BM) for exposure to volatile organic compounds (VOCs). Sampling guidelines, approved analytical procedures, quality control systems, detailed aspects for the interpretation of biomonitoring data, a compilation of international biological action values for VOC exposure at the workplace (e.g., BAT, BEI®), and state of the art reference values are outlined or referred to in this review for recommendation as guidelines for health professionals in occupational and environmental settings.VOCs are frequently encountered at the workplace, in daily routines and widely used consumer products. They cover a broad spectrum of chemical classes with different physicochemical and biological properties. Inhalation is a prominent route of exposure due to their volatility but many VOCs can quite readily be absorbed through the skin. BM allows assessment of the integrated exposure by different routes including inhalation and concomitant dermal and oral uptake—a helpful tool for relating exposure to body burden and possible health effects. Because of the different toxicological profiles of VOCs, no uniform approach for BM can be recommended. VOCs in blood and urinary VOC metabolites are most often applied for BM. Limit values for workplace exposure have been established for many VOCs. In this field, profound analytical methodology and extensive experience exist in numerous international scientific laboratories for reliable routine application. Contamination and loss of VOCs during specimen collection, storage and sample treatment, and applied calibration procedure are the most important uncertainties for analytical quantification of VOCs in blood. For interpretation of the analytical results appropriate time of sampling, according to toxicokinetics of the compound, is crucial due to VOC elimination with short but differing biological half-lives. Lifestyle factors (such as smoking habits, alcohol consumption, and dietary habits), workload, personal working habits, exposure to VOC mixtures and endogeous factors (as genetic polymorphism for VOC metabolizing enzymes, body mass) contribute to BM results and have to be considered in detail. Future analytical work should focus on the improvement of analytical methodology of VOC determination in body fluids at low-level environmental exposure and evaluation of corresponding reference intervals.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3