Inorganically filled carbon nanotubes: Synthesis and properties

Author:

Gautam Ujjal K.1,Bando Yoshio2,Costa Pedro M. F. J.3,Fang Xiaosheng1,Dierre Benjamin4,Sekiguchi Takashi4,Golberg Dmitri2

Affiliation:

1. 1International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

2. 2World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

3. 3CICECO, Department of Ceramic and Glass, University of Aveiro, 3810-193 Aveiro, Portugal

4. 4Advanced Electronic Materials Center, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

Abstract

Since the discovery of carbon nanotubes (CNTs) in 1991, widespread research has been carried out to understand their useful physical and electronic properties and also to explore their use in devices. CNTs have many unique properties such as tunable electrical resistance, mechanical robustness, and high thermal conductivity, which when combined with other inorganic materials such as phosphors or superconductors could lead to hetero-structures with diverse functionality. We have been able to obtain mass production of such materials wherein CNTs form core-shell heterostructures with metals, semiconductors, insulators, and even metal-semiconductor heterojunctions. The emerging strategy employs a high-temperature chemical vapor deposition (CVD) technique and high heating rates. Interestingly, due to their high temperature stability, CNTs can act as a nanoreactor for production of exotic materials inside it. In this article, we take ZnS-filled CNTs as an example to explain our synthesis strategy. We explore the optical behavior of these complex materials, analyzing both their luminescence and degradation upon exposure to an electron beam. In addition, the mechanical response of filled CNTs has been evaluated individually inside a transmission electron microscope fitted with an atomic force microscopy–transmission electron microscopy (AFM–TEM) sample holder. Many applications can be envisioned for these nanostructures ranging from nanothermometers to photo-protective storage and delivery devices.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference39 articles.

1. a;Ajayan;Nature,1993

2. smll;Dorozhkin;Small,1088

3. a;Gao;Nano Lett,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3