Substituent effects on the structure of hexacoordinate carbon bearing two thioxanthene ligands

Author:

Yamaguchi Torahiko1,Yamamoto Yohsuke1

Affiliation:

1. 1Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Abstract

In order to elucidate the electronic nature of our recently reported first hexacoordinated carbon (12-C-6), density functional theory (DFT) calculations of sulfide precursor, sulfone derivative, and S+-F derivative were carried out and compared with those of the reported S+-Me hexacoordinated carbon. Computations on the hexacoordinated carbon, indicating that four attractive C–O interactions with the central hexacoordinate carbon atom exist, also revealed that the interactions consist of two different types of three-center four-electron bonds, which can be regarded as electron donation by the lone pairs of the oxygen atoms to the empty low-lying π*-orbitals of the allene. The optimized structures of the sulfide, sulfone, S+-F, and the original S+-Me suggested that the introduction of electron-withdrawing groups at the sulfur atoms would make the C–O attractive interactions stronger by a larger contribution of the carbon dication resonance structure. Thus, allene compounds (sulfide, sulfone, sulfonium) with two different thioxanthene ligands (one with 1,8-dimethoxy groups as in the S+-Me compound and the other with 1,8-diphenoxy groups) were synthesized to confirm the predicted substituent effects on the C(central)–O interactions. Electron-withdrawing substituents at the sulfur atoms were found to give rise to strong C(central)–O attractive interactions; the average values of the four C–O distances were smaller as the electron-withdrawing ability of the sulfur atoms rose. Additionally, C(central)···OMe distances were shorter than the corresponding C(central)···OPh distances, reflecting the higher electron-donating ability of the oxygen atoms at these 1,8-positions of the thioxanthene skeleton.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference34 articles.

1. jo a;Hojo;Org Chem,1478

2. Phosphorus Silicon;Kinoshita;Sulfur,1339

3. a;Schleyer;Am Chem Soc,1983

4. cr a;Bader;Chem Rev,1991

5. a;Schleyer;Am Chem Soc,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3