The role of NMR in the study of partially ordered materials: Perspectives and challenges

Author:

Domenici Valentina1

Affiliation:

1. 1Department of Chemistry and Industrial Chemistry, University of Pisa, via Risorgimento 35, 56126, Pisa, Italy

Abstract

The development of NMR techniques applied in the last 10 years to partially oriented systems, and in particular to liquid crystals (LCs), is the object of this brief perspective. The evolution of NMR methods (i.e., new NMR pulse sequences) and the improvement of both theoretical models and mathematic tools for the analysis of NMR data (specifically, for partially ordered systems) allowed scientists to extend their research to increasingly complex materials, such as dendrimers, polymers, and membranes, and to investigate unique phenomena, such as field-induced alignment and confining effects. Furthermore, the fast development of nanoscience and biomedicine is offering a rich variety of new “physical chemical” problems related to partially ordered materials. Starting from a brief perspective of recent works on thermotropic and lyotropic LCs based on different NMR methods, new challenges in this field will be drawn. Moreover, recent selected research works will be discussed in detail with particular emphasis on: (i) the effect of high magnetic fields on the supramolecular structure of chiral liquid-crystalline phases, such as the SmC*, TGBA*, and “de Vries”-type SmA* phases, by means of solid-state 2H NMR; (ii) the slow dynamics in the isotropic phase of bent-core LCs (BLCs) and of liquid single-crystal elastomers evidenced by 2H NMR relaxation studies; and (iii) the influence of the LC environment on the conformational properties of rod-like mesogens studied by high-resolution solid-state 13C NMR methods. This work aims to offer an occasion of reflection on this field of physical chemistry with a glance at future trends and challenges in view of the celebration of the International Year of Chemistry, 2011.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference214 articles.

1. jp i;Tallavaara;Jokisaari Phys Chem,2008

2. jp;Domenici;Phys Chem,2008

3. la;Febo;Langmuir,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3