Effects of tribenuron-methyl treatment on glutathione S-transferase (GST) activities in some wheat and barley varieties

Author:

Oztetik Elif1

Affiliation:

1. 1Science Faculty, Department of Biology, Anadolu University, 26470, Eskisehir, Turkey

Abstract

For efficient and profitable crop production, appropriate weed management is essential. Today, herbicides are an integral part of modern farming practice globally, as they assure the convenient method of weed control chemically. Glutathione S-transferases (GSTs, EC.2.5.1.18) are a superfamily of multifunctional enzymes that detoxify endo- and xeno-biotic compounds by conjugating glutathione (GSH) to a hydrophobic substrate. Plant GSTs have been a focus of attention because of their roles in herbicide detoxification and environmental safety. In this study, the application of herbicide called tribenuron-methyl to the cultivars of wheat (Triticum aestivum L. cv. Izgi-2001, Triticum aestivum L. cv. Alpu-2001) and barley plants (Hordeum vulgare L. cv. Bilgi-91, Hordeum vulgare L. cv. Kalayci-97) caused an increase in GST activities of both in roots and shoots. Total GSH and protein contents were also determined for all above-mentioned plants. As a conclusion, our results indicate that depending on the herbicide itself, treatment conditions and the origin of the plant, tribenuron-methyl had an effect on the parameters measured in this study, including the GST activities and synthesis of GSH. The maximum increase in enzyme activity was observed in herbicide-treated Triticum aestivum L. cv. Izgi-2001 roots: 192 % of control with a tribenuron-methyl concentration of 1.5 M. However, further investigations are needed to elucidate the presence of specific tribenuron-methyl GST isozymes in this plant.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference41 articles.

1. Basis of Differential Tolerance of Two Corn Hybrids (Zea mays) to Metolachlor

2. Foyer;Halliwell;Planta,1976

3. tb;Timmerman;Plantarum,1989

4. jexbot;Noctor;Foyer Exp Bot,1283

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3