Photo-click chemistry strategies for spatiotemporal control of metal-free ligation, labeling, and surface derivatization

Author:

Arumugam Selvanathan1,Orski Sara V.1,Mbua Ngalle Eric2,McNitt Christopher1,Boons Geert-Jan2,Locklin Jason1,Popik Vladimir V.1

Affiliation:

1. 1Department of Chemistry, University of Georgia, Athens, GA 30602, USA

2. 3Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA

Abstract

Three photo-click ligation strategies described in this account provide scientists with efficient and selective tools for derivatization of various molecules, polymers, and surfaces. Fast photochemical reactions that are utilized in these techniques permit spatiotemporal control of the process. The absence of activating reagents and catalysts, as well as compatibility with aqueous media, makes photo-click ligations suitable for biomedical applications. The first of these approaches relies on the photochemical decarbonylation of cyclopropenones to produce cyclooctynes. The latter undergo rapid catalyst-free strain-promoted azide–alkyne cycloaddition (SPAAC) to azide-tagged substrates. The second method is based on a very fast (>104 M–1 s–1) light-triggered hetero-Diels–Alder reaction and permits efficient derivatization of substrates bearing vinyl ether moiety. An even faster reaction between photochemically generated naphthoquinone methides (oNQMs) and thiols (~2 × 105 M–1 s–1) serves as a basis for a third method. This thiol photo-click chemistry allows for the selective derivatization of thiol-functionalized substrates or labeling of free cysteine residues in proteins. The thioether linkage produced by the reaction of oNQMs and a thiol is stable under ambient conditions, but can be cleaved by UV irradiation, regenerating free thiol. This feature permits the removal or replacement of immobilized compounds, as well as traceless substrate release.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference94 articles.

1. pola;Dag;Polym Sci Part,2008

2. ma;Gacal;Macromolecules,2006

3. in Academic San;Press;Methods Enzymology Vol,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3