Defected/decorated benzenoid/graphitic nanostructures

Author:

Klein D. J.1

Affiliation:

1. 1Texas A&M University at Galveston, Galveston, TX 77553, USA

Abstract

Various decorations, functionalizations, or defects of conjugated benzenoid or graphitic networks are considered, with special attention to the case that the structures are possibly extended in one or two dimensions. This includes various polymers, their end structures, and defects of side groups or vacancies along the chain, strip, or nanotube. This approach further includes various boundary (or edge) structures on semi-infinite graphite, as well as various "quasi-local" defects in what is otherwise two-dimensionally infinite graphite, such defects encompassing vacancy defects, selected substitutional defects, and perhaps even dislocations and disclinations. There are many possible such nanostructures, but property characterization is ultimately desired. Attention is paid to consequent occurrences of defect-localized unpaired (or weakly paired) electrons, as formulated within a resonating valence bond (RVB) framework, especially as regards simple classically appealing theorems or rules. But a further molecular orbital (MO) view is developed. Note is made of associated modifications in the local density of states near the Fermi energy. Consonance of predictions from RVB and MO viewpoints is taken as an indicator of reliable prediction.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference142 articles.

1. Nach Wissen Klasse;Rumer;Math Phys,1931

2. Nach Wissen Klasse;Rumer;Math Phys,1931

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3