The future of solar photovoltaics: A new challenge for chemical physics

Author:

Shevaleevskiy Oleg1

Affiliation:

1. 1Solar Energy Conversion Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia

Abstract

In recent times, photovoltaic (PV) technologies for solar energy conversion have gained greater recognition. World production of PV cells and modules over the last five years grew at an average of around 40 % a year. The history of modern PV science started more than half a century ago. However, the period that followed exploited the mid-20th century developments in the basics of solid-state physics and semiconductor science. With only a few exceptions, almost no major achievements were attained during a long period of time. The present paper offers an attempt of a critical retrospective look at the history and current progress of solar PV research from a personal viewpoint. It also addresses the current status of research on conventional solid-state PV devices and compares it with the alternative organic and molecular PV systems. The paper briefly describes the potential of new types of organic and mesoscopic dye-sensitized solar cells (DSCs). The paper shows that chemical physics rather than traditional solid-state physics is expected to lead to exciting challenges in the future of PV science.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference59 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3