Simultaneous tracing of multiple precursors each labeled with a different homo-elemental isotope by speciation analysis: Distribution and metabolism of four parenteral selenium sources

Author:

Suzuki Kazuo T.1,Doi Chiaki1,Suzuki Noriyuki1

Affiliation:

1. 1Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan

Abstract

The availability, distribution, and metabolism of four typical selenium sources [inorganic selenite and selenate, and organic selenomethionine (SeMet) and methylselenocysteine (MeSeCys)] were compared by administering them simultaneously through a parenteral route. The four selenium sources were each labeled with a different enriched selenium isotope (82Se, 78Se, 77Se, and 76Se, respectively), and administered intravenously at the dose of 25 μg Se/kg body weight each to rats that had been depleted of natural abundance selenium with a single isotope, 80Se, by feeding 80Se-selenite in drinking water and a selenium-deficient diet. At 1 h post-injection, the amounts of the four tracers recovered from major organs and blood comprised around 70, 55, and 50 % of the doses for selenite, MeSeCys and SeMet, and selenate, respectively, being most abundant in the liver. The intact precursors, except for selenite, were recovered from all organs. 77Se and 76Se of SeMet and MeSeCys origin, respectively, were much more efficiently recovered from the pancreas than selenite and selenate, in forms mostly bound to proteins together with intact forms, suggesting that SeMet and MeSeCys are preferentially distributed directly to the pancreas. The incorporations of selenium into selenoprotein P (Sel P) and selenosugars were most efficient from selenite and less efficient from SeMet, suggesting that selenite was most efficiently utilized for the syntheses of selenoproteins and selenosugars. Although selenate was partly excreted into the urine in its intact form, it was retained longer in the plasma in its intact form than the other selenium sources. The advantage of simultaneous administration of multiple precursors each labeled with a different enriched isotope to depleted hosts followed by simultaneous tracing of the labeled isotopes over the conventional method with a single tracer is emphasized together with cautions that may occur with the new multiple tracer method.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference34 articles.

1. In press;Haratake;Biol Inorg Chem,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3