Bicyclopropylidene. A unique tetrasubstituted alkene and versatile C6-building block for organic synthesis

Author:

Molander Gary A.1

Affiliation:

1. 1Institut für Organische Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany

Abstract

Bicyclopropylidene (4), now readily available in preparatively viable quantities, is evolving as a useful C6 building block for organic synthesis due to its enhanced reactivity at the C-H, the C=C, as well as both types of C-C single bonds. Monosubstituted derivatives are accessible by deprotonation/electrophilic substitution. Di- and tetrasubstituted bicyclopropylidenes are best made by copper-mediated reductive dimerization of bromolithiocarbenoids. The 1,3-dipolar cycloadducts of nitrones rearrange to spirocyclopropanated piperidones, palladium-catalyzed codimerizations with acrylates occur with opening of one of the rings to yield precursors to bicyclo[3.3.0]octene and bicyclo[5.3.0]decene skeletons. Silicon-heteroatom bonds can be added across the double bond of 4 under palladium catalysisjust like across a C텡C triple bond, and carbopalladation of the double bond in 4 occurs more rapidly than that in an acrylate. A variety of new three-component reactions of 4 with alkenyl as well as aryl halides and dienophiles have been developed and extended to be carried out in a combinatorial sense, even on a polymer support, with an additional dimension added in the cleavage step. Most of the reported reactions of bicyclopropylidene (4) proceed with good to excellent yields.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference5 articles.

1. de Dissertation;Pohlmann;Org Lett,2000

2. de;Bräse;and Angew Chem Angew Chem Int Eds Engl,1995

3. de;Binger;Eur Org Chem,1998

4. a de de In preparation;Meijere;Angew Chem Angew Chem Int Eds Engl Chem Eur J,1999

5. Carbocyclic Three Membered Compounds In de Stuttgart;Suginome;Am Chem Soc,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3