Designer cyclopeptides for self-assembled tubular structures

Author:

Ranganathan Darshan1,Lakshmi C.1,Haridas V.1,Gopikumar M.1

Affiliation:

1. 1Discovery Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Abstract

A simple design strategy for a facile and direct entry into hydrogen-bonded peptide nanotubes is delineated with polymethylene-bridged cystine-based macrocycles. The key feature of the design is the placement of a pair of self-complementary hydrogen-bonding (NH–CO or NH–CO–NH) groups at almost opposite poles of the ring. A large variety of cyclobisamides and bisureas prepared in a single step by direct condensation of commercially available 1,ω-alkane dicarbonyl dichloride or diisocyanate with either cystine diOMe or its extended bispeptide were examined by X-ray crystallography and shown to possess an inherent property of self-assembling into hydrogen-bonded, open-ended, hollow tubular structures. The totally hydrophobic interior of the cyclobisamide tubes creates a micro environment capable of solubilizing highly lipophilic substances in water. The cyclic bisurea tubes are demonstrated to act as excellent receptors for selective binding to 1,ω-alkane dicarboxylates. The scope of the design is extended to the creation of tubular structures by stacking of rings through aromatic π-π interactions.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3