Electrostatic cross-modulation of the pseudoaromatic character in single-stranded RNA by nearest-neighbor interactions

Author:

Acharya Parag1,Chattopadhyaya Jyoti1

Affiliation:

1. 1Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden

Abstract

The generation of a single anionic or cationic center at an alkaline or acidic pH in a given molecule presents a unique opportunity to examine the electrostatic make-up of these molecules both at the neutral or ionic state. The generation of a single cationic center in the phenyl-nicotinamide system provided new straightforward evidence showing that the charge density of the electron-deficient pyridinium was actually enhanced by the donation of the charge from the electron-rich phenyl group (i.e., the pyridinyl became more basic by ca. 0.5 pKa unit compared to an analogous system where phenyl was absent) owing to the electrostatic interactions between these two moieties. On the other hand, the generation of the 5'-guanylate ion in the hexameric single-strand (ss) RNA [5'-GAAAAC-3'], in comparison with the constituent trimeric, tetrameric, and pentameric-ssRNAs, has unequivocally shown how far the electrostatic cross-talk (as an interplay of Coulombic attractive or repulsive forces) in this electronically coupled system propagates through the intervening pAp nucleotide steps until the terminal pC-3' residue in comparison with the neutral counterpart. The footprint of the propagation of this electrostatic cross-talk among the neighboring nucleobases is evident by measurement of pKas from the marker protons of ionization point (i.e., of G) as well as from the neighboring marker protons (i.e., of A or C) in the vicinity, as well as from the change of the chemical environment (i.e., chemical shifts) around their aromatic marker protons (δH2, δH8, δH5, and δH6) owing to a change of the stacking-destacking equilibrium as a function of pH.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3