Exploring RNA-ligand interactions

Author:

Tor Yitzhak1

Affiliation:

1. 1Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

RNA molecules play essential roles in biological processes and are evolving as important targets for therapeutic intervention. Small molecules that specifically bind unique RNA sites and prevent the formation of functional RNA folds or RNA-protein complexes can modulate cell functions and can become of therapeutic potential. To explore such recognition events and to fabricate discovery assays, effective biophysical tools need to be advanced. When carefully designed, new fluorescent nucleosides can serve an unparalleled role in such studies. Our criteria for "ideal" fluorescent nucleoside analogs include: (a) high structural similarity to the native nucleobases to faithfully mimic their size and shape, as well as hybridization and recognition properties; (b) red-shifted absorption bands; (c) red-shifted emission band (preferably in the visible); (d) a reasonable emission quantum efficiency; and, importantly, (e) sensitivity of their photophysical parameters to changes in the microenvironment. Our program, aimed at the development of new emissive isomorphic nucleoside analogs, has yielded several useful nucleobases. Selected analogs were implemented in fluorescence-based assays. This overview presents the motivation for this work by introducing RNA-ligand interactions and discusses the design and synthesis of fluorescent isosteric nucleobase analogs and their utilization for the fabrication of "real-time" fluorescence-based biophysical assays.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference56 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3