Silica-protein composite layers of the giant basal spicules from Monorhaphis: Basis for their mechanical stability

Author:

Wang Xiaohong1,Schloßmacher Ute2,Jochum Klaus Peter3,Gan Lu1,Stoll Brigitte3,Uriz Iosune4,Müller Werner E. G.2

Affiliation:

1. 1National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, CHN-100037 Beijing, China

2. 2Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany

3. 3Max-Planck-Institut für Chemie, Postfach 3060, D-55020 Mainz, Germany

4. 4Department of Aquatic Ecology, Centre d’Estudis Avançats de Blanes, Accés a la Cala St Francesc, 14, ES-17300 Blanes (Girona), Spain

Abstract

The hexactinellid sponge Monorhaphis chuni possesses with its giant basal spicules the largest biosilica structure on Earth. The approximately 8.5-mm-thick spicules are composed of up to 800 lamellae. By application of high-resolution electron microscopy (HR-SEM), it is shown that within the siliceous lamellae a proteinaceous scaffold exists which is composed of one protein of a size of 27 kDa. Analyses with Fourier transform infrared (FT-IR) emission and energy-dispersive X-ray (EDX) spectroscopy support this localization of the protein. No evidence for the presence of protein on the surfaces of the lamellae could be obtained. Heating the giant basal spicule to 600 °C destroys and eliminates the protein scaffold. At a temperature of 1600 °C, the lamellae fuse to solid glass via a nonstructured, foamed-up molten transition state. Elevation of the temperature to 2700 °C results in the formation of silica drops (Euplectella aspergillum). After the elimination of the protein scaffold from the silica lamellae, the spicules lose their mechanical characteristics of the original hydrated silica/protein composite to be flexible and simultaneously stiff and tough. The data presented here are expected to contribute to technologies suited to fabricate novel organic/inorganic (silica) hybrid fibers.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference41 articles.

1. pnas;Shimizu;Proc Natl Acad Sci USA,1998

2. jbc;Schröder;Biol Chem,1074

3. pnas;Cha;Proc Natl Acad Sci USA,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3