Arsenic species in seafood: Origin and human health implications

Author:

Francesconi Kevin A.1

Affiliation:

1. 1Institute of Chemistry-Analytical Chemistry, Karl-Franzens University Graz, Universitätsplatz 1, 8010 Graz, Austria

Abstract

The presence of arsenic in marine samples was first reported over 100 years ago, and shortly thereafter it was shown that common seafood such as fish, crustaceans, and molluscs contained arsenic at exceedingly high concentrations. It was noted at the time that this seafood arsenic was probably present as an organically bound species because the concentrations were so high that if the arsenic had been present as an inorganic species it would certainly have been toxic to the humans consuming seafood. Investigations in the late 1970s identified the major form of seafood arsenic as arsenobetaine [(CH3)3As+CH2COO], a harmless organoarsenic compound which, following ingestion by humans, is rapidly excreted in the urine. Since that work, however, over 50 additional arsenic species have been identified in marine organisms, including many important food products. For most of these arsenic compounds, the human toxicology remains unknown. The current status of arsenic in seafood will be discussed in terms of the possible origin of these compounds and the implications of their presence in our foods.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference34 articles.

1. aje kwn;Rahman;Am J Epidemiol,2009

2. a;Benson;Am Chem Soc,01160

3. taap;Lai;Toxicol Appl Pharmacol,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3