Possible routes for pyrochemical separation: Focus on the reductive extraction in fluoride media

Author:

Delpech Sylvie1

Affiliation:

1. 1IPN - UMR8608 Université Paris Sud, Bâtiment 100, 91406 Orsay Cedex, Paris, France

Abstract

Molten salts (MSs) such as fluoride or chloride salts at high temperature (400–800 °C) are solvents known for their high solvation power and electroactivity range. Rare earths, lanthanides, actinides, and refractory metals can be dissolved, treated, and purified in MSs. The properties of these solvents are particularly interesting for nuclear spent-fuel reprocessing. The pyrochemical separation and extraction of solutes can be performed using several methods taking into account the effects of redox and/or acidity. This paper is focused on the reductive extraction method performed by contacting a liquid metal (LM) containing reductive species and an MS. The analytical model developed to calculate the efficiency of such a method is detailed in this paper. To apply this model, one essential point is the establishment of a database related to the redox and solvation properties of solutes in MSs. The approach retained to propose a database based on the analysis of both thermochemical data of pure compounds and experimental measurements reported in the literature is described in this paper in the case of lanthanides in fluoride MSs. The use of the database to calculate efficiency as a function of process parameters is given in this paper as well as the comparison between two reducing agents considered.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference16 articles.

1. jallcom Alloys;Conocar,2004

2. énergie nucléaire du futur : quelles recherches pour quels objectifs Monographie DEN,2005

3. déposé le FR;Laplace,2011

4. jnucmat;Chamelot;Nucl Mater,2006

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3