Vanadium-salen and -salan complexes: Characterization and application in oxygen-transfer reactions

Author:

Adão Pedro1,Maurya Mannar R.2,Kumar Umesh2,Avecilla Fernando3,Henriques Rui T.1,Kusnetsov Maxim L.1,Costa Pessoa João1,Correia Isabel1

Affiliation:

1. 1Centro Química Estrutural, Instituto Superior Técnico, TU Lisbon, Av. Rovísco Pais, 1049-001 Lisbon, Portugal

2. 2Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India

3. 3Departamento de Química Fundamental, Universidade da Coruña, Campus da A Zapateira, 15071, A Coruña, Spain

Abstract

Salen complexes are a versatile and standard system in oxidation catalysis. Their reduced derivatives, called salan, share their versatility but are still widely unexplored. We report the synthesis of a group of new vanadium-salen and -salan complexes, their characterization and application in the oxidation of simple organic molecules with H2O2. The ligands are derived from pyridoxal and chiral diamines (1,2-diaminocyclohexane and 1,2-diphenylethylenediamine) and were easily obtained in high yields. The VIV complexes were prepared and characterized in the solid state (Fourier transform infrared, FTIR, and magnetic properties) and in solution by spectroscopic techniques: UV–vis, circular dichroism (CD), electron paramagnetic resonance (EPR), and 51V NMR, which provide information on the coordination geometry. Single crystals suitable for X-ray diffraction studies were obtained from solutions containing the VIV-pyr(S,S-chan) complex: [VVO{pyr(S,S-chen)}]2(μ-O)2·2(CH3)2NCHO, where the ligand is the “half” Schiff base formed by pyridoxal and 1S,2S-diaminocyclohexane. The dinuclear species shows a OVV(μ-O)2VVO unit with tridentate ligands and two μ-oxo bridges. The VIV complexes of the salan-type ligands oxidize in organic solvents to a VV species, and the process was studied by spectroscopic techniques. The complexes were tested as catalysts in the oxidation of styrene, cyclohexene, and cumene with H2O2 as oxidant. Overall, the V-salan complexes show higher activity than the parent V-salen complexes and are an alternative ligand system for oxidation catalysis.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3