Force field for the atomistic simulation of the properties of hydrazine, organic hydrazine derivatives, and energetic hydrazinium ionic liquids

Author:

Gutowski Keith E.1,Gurkan Burcu1,Maginn Edward J.1

Affiliation:

1. 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, IN 46556-5637, USA

Abstract

A force field (FF) is reported for hydrazine (N2H4) and organic hydrazine derivatives, including monomethylhydrazine, 1,1-dimethylhydrazine, monoethylhydrazine, and 2-hydroxyethylhydrazine. The FF successfully reproduces a range of equilibrium properties, including vapor–liquid coexistence densities, vapor pressures, enthalpies of vaporization, and critical properties. Several dynamic properties, including self-diffusion coefficients and rotational time constants, are reported and found to be qualitatively consistent with experimental viscosities. Using this as a basis, a FF is also developed for the protonated forms of these species, i.e., hydrazinium-based cations. Properties of 1:1 energetic salts formed by pairing these cations with the nitrate anion are computed and compared with a limited amount of experimental data. The simulations indicate that the ionic liquid (IL) 2-hydroxyethylhydrazinum nitrate (2-HEHN) has significantly slower dynamics than the other hydrazinium ILs.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference64 articles.

1. Its Derivatives Preparation Properties Applications nd ed volumes New York;Schmidt,2001

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3