Affiliation:
1. 1Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Abstract
IR spectroscopic and X-ray structural data of rhodium and palladium complexes of N-heterocyclic carbene (NHC) and 1H-pyridin-(2E)-ylidene (PYE) ligands indicate that both ligand classes exhibit similar electron-donating properties. However, catalytic application of palladium PYE complexes appears to be limited by PYE ligand loss. Density functional theory (DFT) calculations show that the Pd–CNHC σ-bond is very low-lying in energy (HOMO-14 and 15, ca. –11 eV) and a π-backbonding contribution is also present, whereas the Pd-NPYE σ-bond is comparatively high-lying (HOMO-9 and 10, ca. –8 eV) and the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap is also significantly less (4.0 vs. 5.6 eV). Essentially, electronegativity differences between Pd, C, and N render the Pd–N bond much more polarized and susceptible to electrophilic and nucleophilic attack and hence ligand substitution.
Subject
General Chemical Engineering,General Chemistry
Reference63 articles.
1. in Synthesis Weinheim;Nolan,2006
2. tetlet;Cui;Tetrahedron Lett,2008
3. a;Heaton;Chem Soc Dalton Trans,1039
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献