Carotenoid oxidation products: From villain to saviour?

Author:

Carail Michel1,Caris-Veyrat Catherine1

Affiliation:

1. 1INRA, UMR 408, site Agroparc, 84914 Avignon Cédex 9, France

Abstract

Carotenoid oxidation products have various structures, among which epoxides and apo- or seco-carotenoids are the two main families. Although both these compound types are widely found in the natural world, the sensitivity of carotenoids to oxidation means they can also be an unwanted presence in in vitro assays. On the other hand, carotenoid oxidation products have also provided chemists with useful chemical tools for the structural identification of carotenoids, and in the natural world they are important biological mediators for plants and animals. In vitro, carotenoid oxidation products have been found to exert various effects which are either potentially beneficial or, on the contrary, detrimental to human health. However, to date, few carotenoid oxidation products have been found in humans. In order to isolate and characterize carotenoid oxidation products and identify their mechanism of formation, we set up two chemical oxidation systems. Lycopene was oxidized with potassium permanganate in a biphasic system to produce the fullest possible range of apo-lycopenals and some diapocarotene-dials. Biomimetic chemical systems of a heminic enzyme center were shown to oxidize lycopene and β-carotene into different families of molecules. Analysis by high-performance liquid chromatography coupled with a diode array-UV/vis detector and a mass spectrometry detector (HPLC-DAD-MS) was used to gain insight into the possible mechanisms of formation of the carotenoid oxidation products formed by these biomimetic systems.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3