Syntheses and applications of conducting polymer polyaniline nanofibers

Author:

Huang Jiaxing1

Affiliation:

1. 1Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA

Abstract

Nanofibers with diameters of tens of nanometers appear to be an intrinsic morphological unit that was found to "naturally" form in the early stage of the chemical oxidative polymerization of aniline. In conventional polymerization, nanofibers are subject to secondary growth of irregularly shaped particles, which leads to the final granular agglomerates. The key to producing pure nanofibers is to suppress secondary growth. Based on this, two methods - interfacial polymerization and rapidly mixed reactions - have been developed that can readily produce pure nanofibers by slightly modifying the conventional chemical synthesis of polyaniline without the need for any template or structural directing material. With this nanofiber morphology, the dispersibility and processibility of polyaniline are now much improved. The nanofibers show dramatically enhanced performance over conventional polyaniline applications such as in chemical sensors. They can also serve as a template to grow inorganic/polyaniline nanocomposites that lead to exciting properties such as electrical bistability that can be used for nonvolatile memory devices. Additionally, a novel flash welding technique for the nanofibers has been developed that can be used to make asymmetric polymer membranes, form patterned nanofiber films, and create polymer-based nanocomposites based on an enhanced photothermal effect observed in these highly conjugated polymeric nanofibers.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3