Laser nanochemistry

Author:

Masuhara Hiroshi1,Asahi Tsuyoshi1,Hosokawa Yoichiroh1

Affiliation:

1. 1Department of Applied Physics, Osaka University, Suita 565-0871, Japan

Abstract

Various time- and space-resolved spectroscopies have been developed and applied to thin films and nanoparticles. Dynamic reflection spectroscopies of total internal, diffuse, and regular reflection modes analyze photophysical and photochemical processes at the interface/surface layers with thicknesses of a few tens to a few hundreds of nm and of optically scattering materials. The excited singlet, triplet, and ionic states are identified, and intersystem crossing, isomerization, electron transfer and recombination, and photothermal conversion due to excited-state annihilation are analyzed, just as by transmittance mode spectroscopy. Fluorescence and Rayleigh light-scattering spectroscopies are developed for elucidating excited-state dynamics of single nanoparticles. The optical properties are related to their size, shape, internal structure, and environmental conditions. We prove that organic molecular materials show novel nanometer-size effects due to structural confinement. The high-intensity laser excitation induces ablation whose dynamics and mechanism are considered on the basis of time-resolved spectroscopy and imaging. For nanosecond and femtosecond ablation, we propose cyclic multiphotonic absorption and photomechanical mechanisms, respectively, while purely photochemical ablation was confirmed. Ablation studies have opened a new research approach toward expansion and contraction dynamics of polymer films, nanoparticle preparation, crystal growth control, crystallization in saturated solution, and others.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference22 articles.

1. Japanese;Furutani;Rev Laser Eng,1997

2. Japanese;Tsuboi;Rev Laser Eng,1995

3. and;Masubuchi;Photochem Photobiol Pure Applied Chemistry Phys Chem A,2001

4. Japanese;Hosoda;Rev Laser Eng,1997

5. Japanese;Hosokawa;Rev Laser Eng,2001

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3