In Situ Burning

Author:

Buist Ian1,McCourt James1,Potter Steve1,Ross Sy1,Trudel Ken1

Affiliation:

1. 1SL Ross Environmental Research Ltd., 200-717 Belfast Road, Ottawa, Ontario, K1G 0Z4, Canada

Abstract

Introduction: The use of in situ burning as a spill response technique is not new, having been researched and used for a variety of oil spills since the late 1960s. In general, the technique has proved effective for oil spills in ice conditions and has been used successfully to remove oil spills in ice-covered waters resulting from storage tank and ship accidents in Alaska, Canada and Scandinavia.Although there have been numerous incidents of vessel oil spills that inadvertently caught fire, the intentional ignition of oil slicks on open water has only been seriously considered since the development of fire-resistant oil containment boom beginning in the early 1980s. The development of these booms offered the possibility of conducting controlled burns in open water conditions. In situ burning operations using these booms have been conducted at three spills in the last decade: a major offshore tanker spill, a burning blowout in an inshore environment, and a pipeline spill into a river. In situ burning of thick, fresh slicks can be initiated very quickly by igniting the oil with devices as simple as an oil-soaked sorbent pad. In situ burning can remove oil from the water surface very efficiently and at very high rates. Removal efficiencies for thick slicks can easily exceed 90%. Removal rates of 2000 m3/hr can be achieved with a fire area of only about 10,000 m2 or a circle of about 100 m in diameter. The use of towed fire containment boom to capture, thicken and isolate a portion of a spill, followed by ignition, is far less complex than the operations involved in mechanical recovery, transfer, storage, treatment and disposal. If the small quantities of residue from an efficient burn require collection, the viscous, taffy-like material can be collected and stored for further treatment and disposal. There is a limited window of opportunity for using in situ burning with the presently available technology. This window is defined by the time it takes the oil slick to emulsify; once water contents of stable emulsions exceed about 25%, most slicks are unignitable. Research is ongoing to overcome this limitation. Despite the strong incentives for considering in situ burning as a primary countermeasure method, there remains some resistance to the approach. There are two major concerns: first, the fear of causing secondary fires that threaten human life, property and natural resources; and, second, the potential environmental and human-health effects of the by-products of burning, primarily the smoke. The objective of this chapter is to review the science, technology, operational capabilities and limitations and ecological consequences of in situ burning as a countermeasure for oil spills on water. The main focus of this section is on marine oil spills in open water conditions. The use of in situ burning for spills in ice conditions is dealt with in another chapter. Much of the content of this chapter is updated from an in-depth review of in situ burning produced for the Marine Spill Response Corporation (MSRC) in 1994 (ref. 1). Interested readers are encouraged to refer to the original report for fully-referenced details of the summary presented here. The MSRC report is available from the American Petroleum Institute in Washington, DC.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3