A Critical Evaluation of the Redox Properties of Uranium, Neptunium and Plutonium Ions in Acidic Aqueous Solutions

Author:

Kihara Sorin,Yoshida Zenko,Aoyagi Hisao,Maeda Kohji,Shirai Osamu,Kitatsuji Yoshihiro,Yoshida Yumi

Abstract

Standard redox potentials, E0s, and redox processes of U, Np and Pu ions in acidic aqueous solutions are reviewed and evaluated critically. The E0sof reversible redox processes, MO22+/MO2+ and M4+/M3+ (M: U, Np or Pu) adopted are those proposed mainly by Riglet et al. on the basis of the precise correction of formal potentials, E0's, according to the improved theoretical approach to estimate the activity coefficient. Electrode processes of the U, Np and Pu ions are discussed in terms of current-potential curves, measured so far by polarography, voltammetry or flow coulometry. Special attention is payed to the irreversible MO2+/M4+ reactions. Disproportionation reactions of MO2+ are also discussed. New substances are introduced as intermediates during reductions of MO2+ to M4+ or disproportionations of MO2+.CONTENTSIntroductionStandard redox potentials for uranium, neptunium and plutonium ions in acidic aqueous solutions2.1 Evaluation of E0 from E0' determined by electrochemical measurements2.2 Temperature dependence of E0Redox reactions of uranium, neptunium and plutonium in acidic aqueous solutions investigated by polarography or voltammetry3.1 Uranium3.2 Neptunium3.3 Plutonium3.4 Disproportionation of NpO2+, PuO2+, Np4+ and Pu4+3.5 Reduction of MO2+ and reduction intermediatesRedox reactions of uranium, neptunium and plutonium in acidic aqueous solutions investigated by flow coulometry4.1 Electrode processes of the uranium, neptunium and plutonium ions investigated by flow coulometry at the column electrode at the column electrode4.2 Disproportionation of MO2+ during the electrolysis by flow coulometry4.3 Reduction mechanisms of MO2+ (M = Np or Pu) and reduction intermediates investigated by flow coulometryConclusionsList of abbreviationsAppendixReferences

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3