Endocrine disruption in invertebrates

Author:

Oehlmann J.1,Schulte-Oehlmann U.1

Affiliation:

1. 1Department of Ecology and Evolution – Ecotoxicology, Johann Wolfgang Goethe University Frankfurt, D-60054, Frankfurt am Main, Germany

Abstract

Recent reports have shown that a number of xenobiotics in the environment are capable of interfering with the normal endocrine function in a variety of animals. The overwhelming majority of the studies on the effects of hormone-mimetic industrial chemicals were focused on findings in vertebrates. More detailed information about the effects on and mechanisms of action in invertebrates has only been obtained from a few cases, although invertebrates represent more than 95 % of the known species in the animal kingdom and are extremely important with regard to ecosystem structure and function. The limited number of examples for endocrine disruption (ED) in invertebrates is partially due to the fact that their hormonal systems are rather poorly understood in comparison with vertebrates. Deleterious endocrine changes following an exposure to certain compounds may easily be missed or simply be unmeasurable at present, even though a number of studies show that endocrine disruption has probably occurred. The well-documented case studies of tributyltin effects in mollusks and of insect growth regulators, the latter as purposely synthesized endocrine disruptors, are explained to support this view. According to our present knowledge, there is no reason to suppose that such far-reaching changes are in any sense unique. The additional existing evidence for ED in invertebrates from laboratory and field studies are summarized as an update and amendment of the EDIETA report from 1998. Finally, conclusions about the scale and implications of the observed effects are drawn and further research needs are defined.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference8 articles.

1. Anal;Oehlmann;Chem,1996

2. and;Depledge;Mar Pollut Bull,1999

3. UWSF Umweltchem;Schulte;Ökotox,2001

4. and;Olmstead;Environ Toxicol Chem,2000

5. and;Hahn;Environ Toxicol Chem,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3