Potential of group contribution methods for the prediction of phase equilibria and excess properties of complex mixtures

Author:

Gmehling Jürgen1

Affiliation:

1. 1Universität Oldenburg, Technische Chemie, 26111 Oldenburg, Germany

Abstract

Reliable knowledge of the thermophysical properties of pure compounds and their mixtures in the whole composition and a wide temperature and pressure range is a vital prerequisite for computer-aided synthesis, design, and optimization of chemical processes. Knowledge of the various phase equilibria is most important for the development of thermal separation processes (but also for other applications,such as the design of multiphase reactors, the prediction of the fate of a chemical in the environment,etc.).Whereas 25 years ago, the main interest was directed to the development of predictive tools for vapor–liquid equilibria of subcritical compounds of similar size (ASOG, UNIFAC), 15 years later a proper description of the temperature dependence (excess enthalpies), the activity coefficients at infinite dilution, and solid–liquid equilibria of eutectic mixtures (including strong asymmetric systems) was achieved. After the combination with cubic equations of state [Soave–Redlich–Kwong (SRK), Peng–Robinson (PR)], the group contribution concept was extended to supercritical compounds [predictive SRK (PSRK)]. With the development of an adequate electrolyte model (LIFAC), the equation-of-state approach can even be used for systems with strong electrolytes. With the revision of the group interaction parameters, the extension of the parameter matrix (introduction of new structural groups, filling of parameter gaps), and the help of a large database (Dortmund Data Bank), the predicted results of group contribution methods were significantly improved and the range of applicability greatly extended. Furthermore, still-existing problems with the group contribution approach (proximity effects,etc.) were reduced.With the help of a volume-translated PR equation of state and application of temperature-dependent and improved mixing rules, the remaining weaknesses of group contribution equations of state (such as poor results for liquid densities, excess enthalpies, and the problems with asymmetric systems) were minimized.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3