Sensors and sensor arrays based on conjugated polymers and carbon nanotubes

Author:

Dai Liming1,Soundarrajan Prabhu1,Kim Taehyung1

Affiliation:

1. 1Department of Polymer Engineering, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44304-2909, USA

Abstract

The need for cheaper, faster, and more accurate measurements has been a driving force for the development of new sensing devices. As is well known, the electrical conductivity of conjugated polymers can be reliably regulated over a wide range through interactions with electron acceptors and donors. This, together with the fast optical dynamics (either in the ground or excited states) of most conjugated polymers, has made conjugated polymers very attractive as transducer-active materials. On the other hand, the unusual electronic, mechanical, and thermal properties of carbon nanotubes have also led to their potential use in a wide range of devices, including sensors. In particular, the ability of carbon nanotubes and their derivatives to operate as gas and glucose sensors has been recently demonstrated. This article provides a status review on the research and development of sensors and sensor arrays based on conjugated polymers and carbon nanotubes. The unique features characteristic of most reported sensing transduction modes related to conjugated polymers and carbon nanotubes are discussed, along with their pros and cons.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference3 articles.

1. In press;Gao;Electroanalysis

2. and;Osada;Polymer Sensors Actuators,2000

3. Array Based Publishing;Gelperin;In Electron Syst Proc Int Symp Olfaction Electron,1999

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3