Affiliation:
1. 1École Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640, 24 Rue Lhomond, F-75231,Paris Cédex 5, France
Abstract
In palladium-catalyzed Heck, Stille, or Sonogashira reactions, the nucleophiles-respectively, alkenes, vinylstannanes, or alkynes-are involved in carbopalladation or transmetallation steps that follow the oxidative addition of an aryl halide or triflate to a Pd0 complex. As soon as the nucleophiles possess a C=C or a C 'triple-bond' C bond capable of coordinating the Pd0 complex active in the oxidative addition, they play a dual role since they interfere in the oxidative addition by a decelerating effect due to a partial coordination of the active Pd0 complex. Indeed, its concentration decreases due to the formation of either unreactive complexes (η2-RCH=CH2)Pd0L2 (R = Ph, CO2Et, L = PPh3 ; R = Bu3Sn, L = AsPh3), (η2-RCH=CH2)Pd0L2(OAc)- (R = Ph, L = PPh3), (η2-R-C 'triple-bond' CH)Pd0L2 (R = Ph, L = PPh3) or more slowly reactive complexes (η2-R-C 'triple-bond' CH)Pd0L2 (R = CO2Et, L = PPh3), (η2-RCH=CH2)Pd0L2 (R= CO2Me, L2 = dppf). Whenever the oxidative addition is faster than the ensuing carbopalladation or transmetallation, the decelerating effect of the nucleophiles in the oxidative addition is in favor of a better efficiency for the catalytic cycle by bringing the rate of the fast oxidative addition closer to that of the slow carbopalladation or transmetallation steps.
Subject
General Chemical Engineering,General Chemistry
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献