Comparative Analysis of CNN and CNN-SVM Methods For Classification Types of Human Skin Disease

Author:

Anggriandi Dendi,Utami Ema,Ariatmanto Dhani

Abstract

Cancer is one of the leading causes of death worldwide, with skin cancer ranking fifth. The skin, as the outermost organ of the body, is susceptible to various diseases, and accurate diagnosis is crucial for effective treatment. However, limited access to dermatologists and expensive skin biopsies poses challenges in achieving efficient diagnosis. Therefore, it is important to develop a system that can assist in efficiently classifying skin diseases to overcome these limitations. In the field of skin disease classification, Machine Learning and Deep Learning methods, especially Convolutional Neural Network (CNN), have demonstrated high accuracy in medical image classification. CNN's advantage lies in its ability to automatically and deeply extract features from skin images. The combination of CNN and Support Vector Machine (SVM) offers an interesting approach, with CNN used for feature extraction and SVM as the classification algorithm. This research compares two classification methods: CNN with MobileNet architecture and CNN-SVM with various kernel types to classify human skin diseases. The dataset consists of seven classes of skin diseases with a total of 21.000 images. The results of the CNN classification show an accuracy of 93.47%, with high precision, recall, and F1-score, at 93.55%, 93.74%, and 93.62%, respectively. Meanwhile, the CNN-SVM model with "poly," "rbf," "linear," and "sigmoid" kernels exhibits varied performances. Overall, the CNN-SVM model performs lower than the CNN model. The findings offer insights for medical image analysis and skin disease classification research. Researchers can enhance CNN-SVM model performance with varied kernel types and techniques for complex feature representations.

Publisher

Politeknik Ganesha

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin Cancer Classification Using a Convolutional Neural Network: An Exploration into Deep Learning;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28

2. Detecting Credit Card Fraud Using 1D Convolutional Neural Network: An Efficient Approach for Enhanced Security;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3