Digital Signs Security System using AES-Blowfish-RSA Hybrid Cryptography Approach

Author:

HS Christnatalis,Husein Amir Mahmud

Abstract

Increasing application of digital signatures in legitimate authentication of administrative documents in both public and private environments is one of the points of concern, especially the issue of security and integrity of ownership of signatures. Digital signature is a mathematical scheme, which a unit to identify and prove the authenticity of the owner of the message or document. The study aims to analyze security patterns and identification of digital signatures on documents using the RSA-AES-Blowfish hybrid cryptographic method approach for securing digital signatures, while the Kohonen SOM method is applied to identify ownership recognition of signature images. The analysis framework used in this study is each signature will be stored in the form of a digital image file that has been encrypted using hybrid method of AES-Blowfish with the SHA 256 hash function. Process of forming private keys and public keys in the signature image using the RSA algorithm. Authentic verification of the use of digital signatures on the document has 2 (two) stages, the first stage is signature will be valid used on the document if the result of hashing the selected signature image is the same based on the private key and public key entered by the user, while the second stage identification is done using the Kohonen SOM method to validate the similarity of the chosen signature with the ownership of the signature.

Publisher

Politeknik Ganesha

Reference18 articles.

1. Husein, A M., Bayu, A W, Tommy, Andi, M E, and Siregar, R., 2018, Performance analysis of AES-Blowfish hybrid algorithm forsecurity of patient medical record data, IOP Conf. Series: Journal of Physics: Conf. Series 1007 (2018) 012018, doi:10.1088/1742-6596/1007/1/012018.

2. Husein, A M, Harahap, M., 2017, Pengenalan Multi Wajah Berdasarkan Klasifikasi Kohonen SOM Dioptimalkan dengan Algoritma Discriminant Analysis PCA, QUERY: Jurnal Sistem Informasi, Volume: 01, Number: 02, pp 33-39, ISSN 2579-5341.

3. Husein, A M., Harahap, M., 2017, Penerapan Metode Distance Transform Pada Kernel Discriminant Analysis Untuk Pengenalan Pola Tulisan Tangan Angka Berbasis Principal Component Analysis. Sinkron, Vol 2, No 2, pp 31-36, e-ISSN:2541-2019, p-ISSN:2541- 044X.

4. Randika, K S., 2014, Online and Offline Signature Verification: A Combined Approach, International Conference on Information and Communication Technologies, doi: 10.1016/j.procs.2015.02.089.

5. Mukherjee, A., Priya, K., Pandit, M., & Bhattacharya, D., 2017, Use of Auto Associative Network for signature recognition, International Journal of Current Engineering and Technology, E-ISSN:2277-4106.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3