INFLUENCE OF IRRIGATION SYSTEMS AND COVER CROP ON WATER PRODUCTIVITY, AND MAIZE GROWTH

Author:

AL-ARIDHEE A. H. A.,N. T. MAHDI

Abstract

A field experiment was carried out to assess the effect of different irrigation systems, which included surface drip irrigation, sub-surface drip irrigation, surface irrigation in basins and cover crop on water productivity, growth and yield of maize in a silty clay loam soil in the Nile sub-district of  Babil Governorate, in the fall season 2020. The experiment was designed using the split plot arrangement according to a complete randomized block design (RCBD) with three replications. The experiment treatments included two factors: cover crop (C) includes cover crop (C1) and without the cover crop (C0), and irrigation systems (I): includes surface drip irrigation (I1) subsurface drip irrigation (I2) and surface irrigation in basins (I3). Scheduling Irrigation was applied after 50% depletion of the plant available water. The water balance equation was used to determine the water consumption of maize. The results showed that C1I3 treatment was highest mean of plant height 235 cm, grain yield 11236 kg ha-1, leaf area 6076 cm2 plant-1, and leaf area index 4.05. Whereas, C0I1 was the lowest values for the previous traits, 183 cm, 5200 kg ha-1, 3997 cm2 plants-1, and 2.67 respectively. Treatment C1I2 was superior in the value of field water use efficiency and crop water use efficiency, which reached 3.49 kg m-3 and 3.05 kg m-3, respectively. Whereas, treatment C0I1 gave the lowest value for field and crop water use efficiency, which was 1.11 kg m-3 and 1.05 kg m-3, respectively. The highest water consumption of maize was 709 mm season-1 was for treatment C0I3, and the lowest water consumption was 362 mm season-1 for the treatment C1I2. It is clear that surface drip irrigation in the presence of cover crop contributed to saving irrigation water by reducing water consumption of maize.

Publisher

University of Baghdad - College of Agriculture

Subject

General Agricultural and Biological Sciences,Animal Science and Zoology,Food Science,Horticulture,General Environmental Science,General Veterinary,Food Animals

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3