Categories of Intuitive Reasoning in the teaching of parabolas: A structured practice in Didactic Engineering

Author:

de Sousa Renata Teófilo1ORCID,Alves Francisco Régis Vieira1ORCID,Aires Ana Paula23ORCID

Affiliation:

1. Federal Institute of Education, Science and Technology of Ceará, Fortaleza, BRAZIL

2. University of Trás-os-Montes and Alto Douro, Vila Real, PORTUGAL

3. CIDTFF–Research Center on Didactics and Technology in the Education of Trainers, University of Aveiro, Aveiro, PORTUGAL

Abstract

This work is the result of a pre-experiment carried out as part of a master’s course, dealing with the study of the parabola through different mathematical views. It aims to recognize possible didactic obstacles in its teaching, based on intuitive manifestations in the resolution of a didactic situation based on GeoGebra software. The methodology adopted was didactic engineering in its four phases, experimented with a teacher in initial training. The observation and data collection provided us with elements for a posteriori analysis and validation of the experiment in which we verified the need to discuss the parabola, articulating its geometric, algebraic, and analytical views.

Publisher

Modestum Ltd

Subject

Education,General Mathematics

Reference21 articles.

1. Almouloud, S. A. (2007). Fundamentos da didática da matemática [Fundamentals of didactics of mathematics]. UFPR.

2. Alves, F. R. V. (2019). Visualizing the Olympic Didactic Situation (ODS): Teaching mathematics with support of the GeoGebra software. Acta Didactica Napocensia, 12(2), 97-116. https://doi.org/10.24193/adn.12.2.8

3. Artigue, M. (1988). Ingénierie didactique [Didactic engineering]. Recherches en Didactique des Mathématiques [Research in Didactics of Mathematics], 9(3), 281-308.

4. Bermúdez, E. A., & Mesa, J. H. L. (2018). Estudio histórico, epistemológico y didáctico de la parábola [Historical, epistemological and didactic study of the parabola]. Práxis & Saber [Praxis & Knowledge], 9(19), 63-88. https://doi.org/10.19053/22160159.v9.n19.2018.7922

5. Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques [Epistemological obstacles and problems in mathematics]. In W. Vanhamme, & J. Vanhamme (Eds.), La problématique et l’enseignement de la mathématique [Mathematics issues and teaching] (pp. 101-117). Louvain-la-neuve.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3