What enabled the production of mathematical knowledge in complex analysis?

Author:

Piña-Aguirre José Gerardo1ORCID,Farfán Márquez Rosa María1ORCID

Affiliation:

1. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), México City, MEXICO

Abstract

With the objective of identifying intrinsic forms of mathematical production in complex analysis (CA), this study presents an analysis of the mathematical activity of five original works that contributed to the development of Cauchy’s integral theorem. The analysis of the mathematical activity was carried out through the identification of the types of expressions used and the way they were used by the historical subjects when communicating their results, to subsequently identify transversal elements of knowledge production. The analysis was refined by the notion of confrontation, which depicts the development of mathematical knowledge through the idea of building knowledge against previous knowledge. As a result of the study we established epistemological hypothesis, which are conceived as conjectures that reveal ways in which mathematical knowledge was generated in CA.

Publisher

Modestum Ltd

Subject

Education,General Mathematics

Reference48 articles.

1. Bachelard, G. (1934). La formation de l’esprit scientifique: Contribution a une psychanalyse de la connaissance objective [The formation of the scientific mind: Contribution to a psychoanalysis of objective knowledge]. Librarie Philosophique J. Vrin.

2. Bak, J., & Popvassilev, S. (2017). The evolution of Cauchy’s closed curve theorem and Newman’s simple proof. The American Mathematical Monthly, 124(3), 217-231. https://doi.org/10.4169/amer.math.monthly.124.3.217

3. Bottazzini, U., & Gray, J. (2013). Hidden harmony–Geometric fantasies. The rise of complex function theory. Springer. https://doi.org/10.1007/978-1-4614-5725-1

4. Bottazzini, U., & Tazzioli, R. (1995). Naturphilosophie and its role in Riemann’s mathematics. Revue d’Histoire des Mathématiques [Journal of Mathematics History], 1(1), 3-38.

5. Bråting, K., & Pejlare, J. (2015). On the relations between historical epistemology and students’ conceptual developments in mathematics. Educational Studies in Mathematics, 89(2), 251-265. https://doi.org/10.1007/s10649-015-9600-8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3