Connections between achievement emotions and covariational reasoning: The case of Valeria

Author:

Nava Guzmán Cristian1ORCID,García González María Del Socorro2ORCID,Aguilar Mario Sánchez3ORCID

Affiliation:

1. Instituto de Ciencias Económico Administrativas, Universidad Autónoma del Estado de Hidalgo, Pachuca, MEXICO

2. Facultad de Matemáticas, Universidad Autónoma de Guerrero, Guerrero, MEXICO

3. CICATA Legaria, Instituto Politécnico Nacional, Mexico City, MEXICO

Abstract

This research explores the link between achievement emotions and covariational reasoning, a type of mathematical reasoning involving two variables. The study employs a case study approach, focusing on a high school calculus student named Valeria, and develops a theoretical framework based on the control-value theory and levels of covariational reasoning. The results reveal that Valeria’s ability to coordinate variables and her perceived importance of solving mathematical problems influence her experience of achievement emotions, including enjoyment and frustration. The case study enables the creation of a hypothetical model that explains how students feel achievement emotions when tackling mathematical tasks that require covariational reasoning. The study highlights the significance of comprehending the interplay between emotions and mathematical reasoning to cultivate advanced cognitive and emotional abilities. This research is essential in bridging the gap between emotions and mathematical reasoning, a topic that has been previously overlooked in research on the affective domain.

Publisher

Modestum Ltd

Subject

Education,General Mathematics

Reference31 articles.

1. Bartolini, M. G., & Martignone, F. (2020). Manipulatives in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 487-494). Springer. https://doi.org/10.1007/978-3-030-15789-0_93

2. Bell, A., & Janvier, C. (1981). The interpretation of graphs representing situations. For the Learning of Mathematics, 2(1), 34-42.

3. Blatter, J. K. (2018). Case study. In L. M. Given (Ed.), The SAGE encyclopedia of qualitative research methods (pp. 68-71). SAGE.

4. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958

5. Castillo-Garsow, C. (2012). Continuous quantitative reasoning. In R. L. Mayes, & L. Hatfield (Eds.), Quantitative reasoning and mathematical modelling: A driver for STEM integrated education and teacher in context (pp. 55-73). University of Wyoming.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exploratory study of spontaneous representations of covariational reasoning in middle school students;International Electronic Journal of Mathematics Education;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3