Predictive models, as an idea, to advance the secondary to tertiary transition in science courses

Author:

van Appel Vaughan1ORCID,Pretorius Estherna2ORCID,Durandt Rina3ORCID

Affiliation:

1. Department of Statistics, University of Johannesburg, Johannesburg, SOUTH AFRICA

2. Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, SOUTH AFRICA

3. Mathematics Education Division, School of Education, University of the Witwatersrand, Johannesburg, SOUTH AFRICA

Abstract

Investigating the transition between the secondary and the tertiary levels is a main theme in mathematics and science education. More so, this paper considers the transition that intersects with the after-effects of COVID-19, or the transition together with an educational context dominated by sociocultural differences and educational disadvantages. With this knowledge in mind, we investigated the effects of predictive mathematical models (multiple regression, logistic regression, and decision trees) to predict <i>at-risk</i> students at three time intervals (weeks one, three, and seven) in the semester. The idea was implemented with a first-year life science class of 130 students. Variables from an academic readiness questionnaire along with early assessment grades were used to build these models. Through a Monte Carlo cross validation method, the performance of the executed predictive models was assessed, and limitations were reported. We argue that the results obtained from predictive models can support both lecturers and students in the transition phase. The idea can be expanded to other courses in STEM fields and other educational contexts.

Publisher

Modestum Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3