Empowering vocational students: Exploring mobile learning for sustainable high-level cognition in authentic contexts

Author:

Purba Siska Wati Dewi1ORCID,Chao Han-Chieh2ORCID,Hwang Wu-Yuin23ORCID,Tang Yong-Qi3ORCID

Affiliation:

1. Master of Educational Technology, Universitas Pelita Harapan, Tangerang, INDONESIA

2. Department of Electrical Engineering, National Dong Hwa University, Hualien, TAIWAN

3. Graduate Institute of Network Learning Technology, National Central University, Taoyuan City, TAIWAN

Abstract

Early studies show that learning with mobile devices, also known as mobile learning, improves students’ learning in authentic contextual learning–i.e., learning connected to the real world. However, no empirical evidence has yet to firmly prove the effects of mobile technology on specific student skillsets such as learning scalability which means learning can be applied in various scenarios and learning sustainability which means learning can be sustained in real-world environments. Therefore, this study aims to explore the effect of learning using a mobile app called mobile Smart-Physics on learning cognitive levels, learning scalability (e.g., number of learning locations and number of experimental data), and learning sustainability (e.g., number of completed assignments). Eleventh-grade vocational high school students volunteered for this quasi-experiment and were divided into an experimental group (EG), which used Smart-Physics, and a control group (CG), which used a mobile Ubiquitous-Physics (U-Physics) app. The findings show that the EG significantly outperformed the CG concerning learning cognitive levels, learning scalability and learning sustainability. Smart-Physics features enabled the students to tackle technical and pedagogical difficulties during physical investigations in real-world environments and, in some cases, improved their task accomplishment and sustained their motivation to learn. Location awareness promoted the students’ authentic experiential learning, which sharpened their ability to apply learning in real-world environments and upload more experimental data. Feedback helped the students consolidate their physics theories and practical experiences, thereby generating more learning records with meaningful multimedia content like experimental graphs, tables, and notes in various learning locations. Therefore, we encourage practitioners to use smart learning environment features in their learning tools and activity designs.

Publisher

Modestum Ltd

Reference46 articles.

1. Abu Bakar, J. A., Gopalan, V., Zulkifli, A. N., & Alwi, A. (2018). Design and development of mobile augmented reality for physics experiment. In Proceedings of the International Conference on User Science and Engineering. https://doi.org/10.1007/978-981-13-1628-9_5

2. Ahn, T. Y., & Lee, S. M. (2016). User experience of a mobile speaking application with automatic speech recognition for EFL learning. British Journal of Educational Technology, 47(4), 778-786. https://doi.org/10.1111/bjet.12354

3. Almalki, A. D. A., & Elfeky, A. I. M. (2022). The effect of immediate and delayed feedback in virtual classes on mathematics students’ higher order thinking skills. Journal of Positive School Psychology, 6(6), 432-440. https://journalppw.com/index.php/jpsp/article/view/6923

4. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy of educational objectives. Longman.

5. Clarke, J., Dede, C., Ketelhut, D. J., & Nelson, B. (2006). A design-based research strategy to promote scalability for educational innovations. Educational Technology, 46(3), 27-36. https://www.jstor.org/stable/44429300

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3