Performance evaluation of gamma-type Stirling engine using combined Schmidt and mechanical loss model

Author:

Alfarawi Suliman1ORCID,AL-Dadah Raya2ORCID,Mahmoud Saad2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Benghazi, Benghazi, LIBYA

2. Department of Mechanical Engineering, University of Birmingham, Birmingham, UK

Abstract

This paper focuses on the study of gamma-type Stirling engine prototype using a combined Schmidt closed-form and mechanical loss analysis. Not restricted to optimizing the indicated power as classic Schmidt theory is set to, this analysis allows to maximize the shaft power due to the mechanical loss in power transmission. For this purpose, MATLAB code was developed to calculate the indicated and the shaft powers of the engine at different operating parameters. The results showed that shaft power peaks at swept volume ratios smaller than those of indicated power at different values of mechanism effectiveness. Within the range of engine mechanism effectiveness typically between 0.7 and 0.9, it was found that maximum shaft power for this particular engine can be achieved at different optimum values of swept volume ratio between 0.75 and 0.95 and phase angle between 80° and 90°. However, an optimum swept volume ratio was found to be <i>k</i>=0.55 of the same engine size for different scenarios of operation. Also, the developed model can be used as a design tool in the preliminary stage to find the optimum geometry of the engine. The new engine design parameters including the stroke, the crank radius and power piston bore, and engine alteration were presented.

Publisher

Modestum Ltd

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3