AI-driven solutions for low back pain: A pilot study on diagnosis and treatment planning

Author:

Neto Agrinazio Geraldo Nascimento1ORCID,Herrera Sávia Denise Silva Carlotto1ORCID,Moura Rodrigo2ORCID,Cielo Graciele Moura3ORCID,Pegoraro Fábio1ORCID,Lira Valmir Fernandes de1ORCID,Paiva Maykon Jhuly Martins de4ORCID,Rosa Carlos Gustavo Sakuno4ORCID,Alves Rafaela Carvalho1ORCID,D’Alessandro Walmirton Bezerra4ORCID

Affiliation:

1. University of Gurupi –UNIRG, Av. Rio de Janeiro, Nº 1585 -St. Central, Gurupi -TO, 77403-090, BRAZIL

2. Institute of Education and Research Santa Casa: R. Domingos Vieira, 590 - Santa Efigênia, Belo Horizonte - MG, 30150-240, BRAZIL

3. MEDME.CARE®, Belo Horizonte, BRAZIL

4. University of Gurupi –UNIRG, St. Oeste, Paraíso do Tocantins - TO, 77600-000, BRAZIL

Abstract

Low back pain (LBP) mainly affects the working-age population, and few specific causes can be identified, making diagnosis difficult and rendering them nonspecific. Artificial intelligence (AI) can be a great ally for prognosis, diagnosis, and treatment plans in healthcare. To describe the development of software aimed at providing prognoses, diagnoses, and treatment suggestions for LBP with AI support, as well as to report the functionality and initial limitations through a pilot study. Fifty assessment records from a database of patients at the Physiotherapy School Clinic of the University of Gurupi-UnirG, who were treated for LBP, were analyzed. Using data mining, including information described by patients and post-processing of discovered anamnesis patterns (rules), it was possible to develop software for evaluation and intervention in this patient group. Subsequently, a pilot study was initiated with 34 patients residing in the city of Gurupi-TO to test the application’s functionality. The software enabled more accurate treatments, diagnoses, and prognoses during the pilot study, directing the patient towards physiotherapeutic intervention based on the presented condition.

Publisher

Modestum Ltd

Reference12 articles.

1. WHO. Low back pain. Word Health Organization; 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/low-back-pain (Accessed: 5 May 2024).

2. GBD. GBD 2019: Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. GBD; 2019. Available at: https://vizhub.healthdata.org/gbd-results/ (Accessed: 5 May 2024).

3. GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: A systematic analysis of the global burden of disease study 2021. Lancet Rheumatol. 2023:5(6):e316-29. https://doi.org/10.1016/S2665-9913(23)00098-X PMid:37273833

4. Dzakpasu FQS, Carver A, Brakenridge CJ, et al. Musculoskeletal pain and sedentary behaviour in occupational and non-occupational settings: A systematic review with meta-analysis. Int J Behav Nutr Phys Act. 2021;18(1):159. https://doi.org/10.1186/s12966-021-01191-y PMid:34895248 PMCid:PMC8666269

5. Dziedzinski AT, Johnston C, Zardo E. Perfil epidemiológico dos pacientes com dor lombar que procuram o serviço de traumatologia e ortopedia do Hsl-PUC-RS [Perfil epidemiológico dos pacientes com dor lombar que procuram o serviço de traumatologia e ortopedia do Hsl-PUC- RS]. Rio Grande Sul. 2005;13(12):453-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3