Seismology in the cloud: guidance for the individual researcher

Author:

Krauss ZoeORCID,Ni YiyuORCID,Henderson ScottORCID,Denolle MarineORCID

Abstract

The commercial cloud offers on-demand computational resources that could be revolutionary for the seismological community, especially as seismic datasets continue to grow. However, there are few educational examples for cloud use that target individual seismological researchers. Here, we present a reproducible earthquake detection and association workflow that runs on Microsoft Azure. The Python-based workflow runs on continuous time-series data using both template matching and machine learning. We provide tutorials for constructing cloud resources (both storage and computing) through a desktop portal and deploying the code both locally and remotely on the cloud resources. We report on scaling of compute times and costs to show that CPU-only processing is generally inexpensive, and is faster and simpler than using GPUs. When the workflow is applied to one year of continuous data from a mid-ocean ridge, the resulting earthquake catalogs suggest that template matching and machine learning are complementary methods whose relative performance is dependent on site-specific tectonic characteristics. Overall, we find that the commercial cloud presents a steep learning curve but is cost-effective. This report is intended as an informative starting point for any researcher considering migrating their own processing to the commercial cloud.

Funder

National Science Foundation

National Defense Science and Engineering Graduate

Publisher

McGill University Library and Archives

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Automated Seismic Event Detection Approaches: An Application to Victoria Land, East Antarctica;Journal of Geophysical Research: Machine Learning and Computation;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3