Feasibility of Deep Learning in Shear Wave Splitting analysis using Synthetic-Data Training and Waveform Deconvolution
Author:
Chakraborty MeghaORCID, Rümpker GeorgORCID, Li WeiORCID, Faber Johannes, Srivastava NishthaORCID, Link FrederikORCID
Abstract
Teleseismic shear-wave splitting analyses are often performed by reversing the splitting process through the application of frequency- or time-domain operations aimed at minimizing the transverse-component energy of waveforms. These operations yield two splitting parameters, ɸ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real waveform data, we generate our own synthetic dataset to train the model. The model is capable of determining ɸ and δt with a root mean squared error (RMSE) of 9.7° and 0.14 s on a noisy synthetic test data. The application to real data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies with mean absolute differences of 9.6° and 0.16 s in the calculation of ɸ and δt respectively.
Funder
Deutsche Forschungsgemeinschaft Bundesministerium für Bildung und Forschung
Publisher
McGill University Library and Archives
Reference31 articles.
1. Agarap, A. F. (2018). Deep learning using rectified linear units (relu). ArXiv Preprint ArXiv:1803.08375. 2. Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510. https://doi.org/10.1785/BSSA0810062504 3. Barruol, G., Wuestefeld, A., & Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. https://doi.org/10.18715/sks_splitting_database 4. Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Reviews, 56 (Suppl 1), 1513–1589. https://doi.org/https://doi.org/10.1007/s10462-023-10562-9 5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. http://www.deeplearningbook.org
|
|