Feasibility of Deep Learning in Shear Wave Splitting analysis using Synthetic-Data Training and Waveform Deconvolution

Author:

Chakraborty MeghaORCID,Rümpker GeorgORCID,Li WeiORCID,Faber Johannes,Srivastava NishthaORCID,Link FrederikORCID

Abstract

Teleseismic shear-wave splitting analyses are often performed by reversing the splitting process through the application of frequency- or time-domain operations aimed at minimizing the transverse-component energy of waveforms. These operations yield two splitting parameters, ɸ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real waveform data, we generate our own synthetic dataset to train the model. The model is capable of determining ɸ and δt with a root mean squared error (RMSE) of 9.7° and 0.14 s on a noisy synthetic test data. The application to real data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies with mean absolute differences of 9.6° and 0.16 s in the calculation of ɸ and δt respectively.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

McGill University Library and Archives

Reference31 articles.

1. Agarap, A. F. (2018). Deep learning using rectified linear units (relu). ArXiv Preprint ArXiv:1803.08375.

2. Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510. https://doi.org/10.1785/BSSA0810062504

3. Barruol, G., Wuestefeld, A., & Bokelmann, G. (2009). SKS-Splitting-database. Université de Montpellier, Laboratoire Géosciences. https://doi.org/10.18715/sks_splitting_database

4. Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler, R., & Zhu, X. X. (2023). A survey of uncertainty in deep neural networks. Artificial Intelligence Reviews, 56 (Suppl 1), 1513–1589. https://doi.org/https://doi.org/10.1007/s10462-023-10562-9

5. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. http://www.deeplearningbook.org

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3