An Architecture of Decision Support System for Visual-Auditory-Kinesthetic (VAK) Learning Styles Detection Through Behavioral Modelling

Author:

Mohd Fatihah,Wan Yahya Wan Fatin F Atihah,Ismail Suryani,Jalil Masita Abdul,Noor Noor Maizura Mohamad

Abstract

Learning style (LS) is a description of the attitudes and behaviors which determine an individual’s preferred way of learning. Since each student has different LS, it is important for the teacher to recognize the differences in LS. Thus, an appropriate technique to detect students' LS, improve the motivation and academic achievement are required. The common approach using questionnaires to identify LS is less accurate due to complete the questionnaire is a tedious task for students and tend to choose answers randomly without understanding the questions. Emotions such as anger, sadness, and happiness resulting the different questionnaire answers. Due to the approach constrains, this study has focused on automated approaches that identify student LS from student behavior in the learning process. Implementation of decision support system (DSS) as automated application systems is needed to help teachers make decisions in determining students' LS. Thus, the objective of this study is to propose the architecture of LS detection automatically using decision support system. The development of the architecture is applying the behavioral modelling, that are contained student’s behavior parameters for visual-auditory-kinesthetic (VAK) model. Evaluation of the architecture is tested with the precision DSS engine. The accuracy of the rule technique achieves significant 80% accuracy. This study aims to help teachers to identify the ability of the student through the learning style (LS) in order to create effectiveness of learning and improving student’s achievement indirectly. Keywords— decision support system, reasoning engines, learning style detection, user behavior, visual-auditory-kinesthetic (VAK) model

Publisher

Telkom University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dyslexia screening and learning style recommendation web-based system;VIII INTERNATIONAL ANNUAL CONFERENCE “INDUSTRIAL TECHNOLOGIES AND ENGINEERING” (ICITE 2021);2022

2. A survey on preferred learning styles among undergraduates during the ODL mode;PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS ENGINEERING & TECHNOLOGY (ICAMET 2020);2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3