Mercury Pollution In Snow Cover Around Thermal Power Plants In Cities (Omsk, Kemerovo, Tomsk Regions, Russia)

Author:

Talovskaya Anna V.1,Yazikov Egor G.1,Osipova Nina A.1,Lyapina Elena E.2,Litay Victoria V.3,Metreveli George4,Kim Junbeum5

Affiliation:

1. National Research Tomsk Polytechnic University

2. Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the RAS

3. Siberian Geotechnical Service

4. University of Koblenz-Landau

5. University of Technology of Troyes

Abstract

Although snow cover is studied as an efficient scavenger for atmospheric mercury (Hg), up to now little is known about Hg behaviour in urban snow cover impacted by thermal power plants (TPPs) during the winter heating season. This study is focused on quantification of Hg in the particulate phase in snow cover and estimation of atmospheric particulate Hg (HgP) depositional fluxes around urban TPPs in cities of Omsk, Kemerovo, Yurga, Tomsk (the south part of Western Siberia, Russia) to provide new insight into Hg occurrence in urban snow. The results demonstrate that the mean Hg content in the particulate phase of snow varied from 0.139 to 0.205mg kg-1, possibly depending on thermal power of TPPs and fuel type used. The estimated mean atmospheric HgP depositional fluxes ranged from 6.6 to 73.1 mg km-2 d-1. Around thermal power plants atmospheric HgP depositional flux was controlled by particulate load. Higher Hg contents in the particulate phase of snow and higher atmospheric HgP depositional fluxes observed in relation to the background values, as well as high enrichment factors determined for Hg in the particulate phase of snow relative to the mean Hg content in the Earth’s crust showed that the snow pollution with Hg is of anthropogenic origin. The coexistence of Hg and S observed for the particulate phase of snow indicated the possible presence of mercury sulfide in this phase. The parameters like Hg content in the particulate phase of snow and HgP atmospheric flux can be used as markers for the identification of coal combustion emission sources.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development

Reference49 articles.

1. Antonova A.M., Vorobev A.V., Vorobev V.A., Dutova E.M., Pokrovskiy V.D. (2019). Modelling distribution of contaminating substances of electric power emissions in the atmosphere on the basis of the SKAT programming complex. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 330(6), pp. 174–186.

2. Antonovich V.V., Antokhin P.N., Arshinov M.Y., Belan B.D., Balin Y.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M., Panchenko M.V., Penner I.E., Pestunov D.A., Savkin D.E., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Chernov D.G., Smargunov V.P., Yausheva E.P., Paris J.-D., Ancellet G., Law K.S., Pelon J., Machida T., and Sasakawa M. (2018). Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs. In: Proc. of SPIE, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Volume 10833. Available at: https://doi.org/10.1117/12.2504388

3. Arduzov S.I., Osipova N.A., Zaitseva O.P. and Belaya E.V. (2015). Geochemistry of Hg in Siberian coals. In: Proc. of 2d International symposium on mercury in biosphere: Ecological and geochemical approach, held 21–25 September 2015 in Novosibirsk, Russia, pp. 27–31 (in Russian)

4. Baltrėnaitė E., Baltrėnas P., Lietuvninkas A., Šerevičienė V. and Zuokaitė E. (2014). Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environmental Science and Pollution Research, 21, pp. 299–313.

5. Boutron C.F., Vandal G.M., Fitzgerald W.F. and Ferrari C.P. (1998). A forty year record of mercury in central Greenland snow. Geophysical Research Letters, 25, pp. 3315–3318.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3