Flash Flood Hazard Mapping Using Landsat-8 Imagery, Ahp, And Gis In The Ngan Sau And Ngan Pho River Basins, North-Central Vietnam

Author:

Nguyen Tien-thanh1,Hoang Anh-huy2,Pham Thi-thu-huong1,Tran Thi-thu-trang1

Affiliation:

1. Faculty of Surveying, Mapping, and Geographic Information, Hanoi University of Natural Resources and Environment

2. Faculty of Environment, Hanoi University of Natural Resources and Environment

Abstract

Flash floods have been blamed for significant losses and destruction all around the world are widely, including Vietnam, a developing nation that has been particularly hard hit by climate change. Therefore, flash flood hazards are essential for reducing flood risks. The topographic wetness index (TWI), altitude, slope, aspect, rainfall, land cover, normalized difference vegetation index (NDVI), distances to rivers and roads, and flow length were used in this study to create a spatial database of ten exploratory factors influencing the occurrence of flash floods in the Ngan Sau and Ngan Pho river basins (North-Central Vietnam). Subsequently, the analytic hierarchy process (AHP) was applied to calculate the weights of these influencing factors. The flood threat was then mapped using GIS techniques. The validation of the flash flood hazards involved 151 flood inventory sites in total. The findings demonstrate that (i) distance from rivers (0.14) and TWI (0.14) factors have the greatest influence on flash flooding, whereas distance from roads (0.06) and NDVI (0.06) factors were found to have the least influence; (ii) a good conformity of 84.8 percent between flood inventory sites and moderate to very high levels of flash flood hazard areas was also discovered; (iii) high and very high flood hazard levels covering areas of 275 and 621.1 km2 were mainly detected along and close to the main rivers and streams, respectively. These results demonstrated the effectiveness of GIS techniques, AHP, and Landsat-8 remote sensing data for flash flood hazard mapping.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3