Seasonal Characteristics of Long-Range Transport and Potential Associated Sources of Particulate Matter (Pm<sub>10</sub>) Pollution at the Station Elk, Poland, on 2021-2022 Data

Author:

Abdo S.1,Koroleva Y.2

Affiliation:

1. Immanuel Kant Baltic Federal University, Institute of Living Systems; Tishreen University

2. Immanuel Kant Baltic Federal University, Institute of Living Systems

Abstract

The current study aimed to determine the potential sources of distant emissions of PM10 particles that significantly affect PM10 levels at a given site in southeastern Baltic. The EEA Air Quality Monitoring Station in Elk City, northeastern Poland, was selected for this study. This station is located approximately 50 km from the border of the Russian exclave (Kaliningrad Region). In this study, the NOAA HYSPLIT_4 trajectory model, potential source contribution function (PSCF), and concentration-weight trajectory (CWT) were employed to investigate the origin of the measured PM10 mass at a receptor site. PSCF and CWT utilize back-trajectory analysis and Lagrangian particle dispersion simulations to reconstruct the advection pathways of air masses arriving at the site. These reconstructed retroplumes provide detailed information regarding the geographic locations traversed by polluted air masses on their way to the receptor. By integrating trajectory information with concurrent pollutant concentration data, the PSCF and CWT enable the identification of potential source regions and quantification of their impact on the observed atmospheric levels. From January 1, 2021, to December 31, 2022, at 200 m the 72h backward trajectories of air masses entering the receptor point were calculated and categorized by clustering them into 5-4-4-5 clusters. Subsequently, the PM10 levels at the Elk site associated with each air mass cluster were examined during the observation period. The seasonal variation in PM10 was generally characterized by a peak in winter and minimum values in summer. PM10 was lower during warmer periods, particularly during summer, and significantly, higher concentrations were observed during colder periods. Cluster analyses showed that airflow followed a seasonal pattern, with different results obtained in different seasons. According to the PSCF and CWT results, in winter and spring, the receptor site was influenced more by long-range PM10 pollution, particularly from heavily industrialized areas in Central-Eastern Europe. In contrast, in summer and autumn, the receptor site was less influenced by long-range pollution. The findings demonstrate that the seasonal distributions of PM10 source areas obtained using these two methods generally share similar characteristics, suggesting the credibility and accuracy of the analytical results.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development,Agricultural and Biological Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3