Affiliation:
1. N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
2. Water and Environmental Research Center, University of Alaska Fairbanks
3. Institute of Radiation Protection and Dosimetry
4. Northern (Arctic) Federal University named after M.V. Lomonosov
5. Yuri Gagarin State Technical University of Saratov
Abstract
In this paper, we review both practical and theoretical assessments for evaluating radon geohazards from permafrost landforms in northern environments (>60º N). Here, we show that polar amplification (i.e. climate change) leads to the development of thawing permafrost, ground subsidence, and thawed conduits (i.e. Taliks), which allow radon migration from the subsurface to near surface environment. Based on these survey results, we conjecture that abruptly thawing permafrost soils will allow radon migration to the near surface, and likely impacting human settlements located here. We analyze potential geohazards associated with elevated ground concentrations of natural radionuclides. From these results, we apply the main existing legislation governing the control of radon parameters in the design, construction and use of buildings, as well as existing technologies for assessing the radon hazard. We found that at present, these laws do not consider our findings, namely, that increasing supply of radon to the surface during thawing of permafrost will enhance radon exposure, thereby, changing prior assumptions from which the initial legislation was determined. Hence, the legislation will likely need to respond and reconsider risk assessments of public health in relation to radon exposure. We discuss the prospects for developing radon geohazard monitoring, methodical approaches, and share recommendations based on the current state of research in permafrost effected environments.
Publisher
Russian Geographical Society
Subject
Environmental Science (miscellaneous),Geography, Planning and Development
Reference100 articles.
1. Adopted I.P.C.C. (2014). Climate Change 2014 Synthesis Report. IPCC: Geneva, Szwitzerland.
2. Al-Ahmady K.K., & Hintenlang D.E. (1994). Assessment of temperature-driven pressure differences with regard to radon entry and indoor radon concentration. AARST. Atlantic City: The American Association of Radon Scientists and Technologists.
3. Arvela H. (1995). Seasonal variation in radon concentration of 3000 dwellings with model comparisons. Radiation Protection Dosimetry, 59(1), 33-42, DOI: 10.1093/oxfordjournals.rpd.a082634.
4. Astakhov N.E., Bartanova S.V., Tubanov C.A. (2015). Radon anomalies of some break zones in buryatia as the factor of radiation risk. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 17, 5-1 (in Russian with English summary).
5. Bakaeva N., Kalaydo A. (2016). About the radon transport mechanisms into the buildings. Construction and reconstruction, (5), 51-59, (in Russian with English summary).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献