Building Stability On Permafrost In Vorkuta, Russia

Author:

Kotov Pavel I.1,Khilimonyuk Vanda Z.1

Affiliation:

1. Lomonosov Moscow State University

Abstract

The Infrastructure stability on permafrost is currently an important topic as the Arctic countries are developing climate change adaptation and mitigation programs. Assessing the sustainability of infrastructure facilities (especially in urban environments) is a difficult task as it depends on many parameters. This article discusses the city of Vorkuta, which is located in the northwest of Russia. This city differs from many others built on permafrost because most of buildings were built according to Principle II (The Active Method) of construction on permafrost with thawing soil prior to construction. Assessments of the engineering and geocryological conditions, basic principles of construction in the city, and reasons for building failures, were carried out within this study. The research is based on publications, open data about buildings, and visual observations in Vorkuta. About 800 buildings are in use in Vorkuta in 2020 (43% of what it was 50 years ago). According to the analysis, about 800 houses have been demolished or disconnected from utility lines over the past 50 years (about 250 of these are still standing, pending demolition). Since 1994, the construction of new residential buildings has almost stopped. Therefore, buildings that have been in use for over 50 years will account for 90% of the total residential housing stock by 2040. The effects of climate change in the city will depend primarily on the principle of construction employed and on the geocryological conditions of the district. Buildings constructed according to Principle I (The Passive Method) were found to be more vulnerable due to a decrease in permafrost bearing capacity. The impact of increasing air temperature on some of the buildings built on bedrock (the central part of the city) and some built on thawing soil will be minimal, as other factors are more significant.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3