Efficacy of Synthetic Sediment Graph Developed using Various Modified Time-Area Methods

Author:

Katebikord Azadeh1,Sadeghi Seyed H.1,Singh Vijay P.2

Affiliation:

1. Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University

2. Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University; Department of Biological and Agricultural Engineering & Zachry Department of Civil & Environmental Engineering, Texas A&M University

Abstract

Suspended sediment (SS) is an essential indicator for assessing watershed health. However, the temporal variation of SS, called sediment graph (SG) using readily available data, is not always considered, particularly in un-gauged watersheds, which are many in developing countries. Since field measurements of SS are time-consuming and costly, the synthetic SG seems to be a promising alternative. Therefore, it is essential to have reliable SS data for watershed management. This study aimed at simulating SGs through conceptual analysis of soil erosion and sediment yield at the watershed scale. To that end, soil erosion, sediment yield, and sediment routing were modeled using 38 storm events collected during 2011 and 2019 at the Galazchai Watershed in West Azerbaijan Province, Iran. Initially, the Time-Area Method (TAM) was applied, and then two strategies were considered to improve the TAM performance, including RUSLE and sediment delivery ratio (SDR) using gradient ratio and WaTEM/SEDEM methods. Comparing simulated SGs with recorded ones showed that the SDR-based method had the lowest relative error in time to peak and base time, but the peak value had the highest relative error. Results also showed that TAM developed using the spatially distributed travel time method had a better performance than the channel longitudinal profile method. Overall, TAM could not simulate the temporal variation of sediment and needs further research.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new approach to simulate watershed sediment graphs;International Journal of Sediment Research;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3