Affiliation:
1. Lomonosov Moscow State University
Abstract
In this paper, the features of landscape indication of permafrost characteristics required for assessing the environmental state at various research scales are discussed. A number of permafrost characteristics affect the geoecological state and stability of natural landscapes, especially in the context of climate warming and technogenic surface disturbances. These include the distribution, temperature regime, thickness and cryogenic structure of permafrost, seasonal freezing and thawing, as well as the development of cryogenic processes. Their determination through the landscape view, however, is ambiguous. The choice of certain permafrost characteristics for geoecological assessment is based on many years of experience in creating cryo-ecological maps on a landscape basis by the school of Faculty of Geography, Moscow State University. The recent studies on the identification of regional cryoindicators are analyzed, including the issues of cryogenic landscapes classification and clarification of the boundaries of geocryological zones using the landscape structural method. The content of the two maps, «Permafrost Landscape Differentiation Map of the Russia Cryolithozone» at a scale of 1: 15,000,000 and «Permafrost Landscape Map of the Republic of Sakha (Yakutia)» at a scale of 1: 1,500,000, is presented, as well as their use as a basis for environmental planning and geoecological assessment.
Publisher
Russian Geographical Society
Subject
Environmental Science (miscellaneous),Geography, Planning and Development
Reference43 articles.
1. Baranov I. (1960). Geocryological Map of the USSR at a Scale of 1:10,000,000; Explanatory note; Obruchev Permafrost Institute: Moscow, Russia (in Russian).
2. Brown J., Ferrians O., Heginbottom J., Melnikov E. (2002). Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2.; NSIDC—National Snow and Ice Data Center: Boulder, CO, USA.
3. Brown J., Hinkel K., Nelson F. (2000). The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geogr., 24, 166-258.
4. Chen M., Rowland J., Wilson C., Altmann G., Brumby S. (2013). The importance of natural variability in lake areas on the detection of permafrost degradation: A case study in the Yukon Flats, Alaska. Permafrost and Periglacial Processes, 24, 224-240, DOI: 10.1002/p.1783.
5. Drozdov D., Korostelev Y., Malkova G., Melnikov E. (2003). The set of eco-geologic digital maps of the Timan-Pechora province. In Proceedings of the Permafrost: 8th International Conference on Permafrost, ICOP, Zurich, 21 July–25 July 2003, 205-210.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献