Prediction of Wildfires Based on the Spatio-Temporal Variability of Fire Danger Factors

Author:

Gizatullin Almaz T.1,Alekseenko N. A.2

Affiliation:

1. Lomonosov Moscow State University

2. Lomonosov Moscow State University; Institute of Geography, RAS

Abstract

Most methods in the field of wildfire prevention are based on expert assessment of fire danger factors. However, their weights are usually assumed constant for the entire application area despite the geographical and seasonal changes of factors. This study aimed to develop a wildfire prevention method based on partial and general fire danger ratings taking into account their spatio-temporal variability. The study was conducted for Krasnoyarsk territory, Orenburg region and the Meschera lowland as the most forest, steppe and peat fire dangerous regions of Russia respectively. Surface temperature, moisture, vegetation structure, anthropogenic load, topography and their variation over subzones and in time were used as fire danger factors. They were evaluated by measuring parameters such as radiobrightness temperature, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), distance to settlements and roads, elevation, slope and aspect. Materials from the Terra/Aqua, Sentinel-3, Landsat-8, Sentinel-2 satellites, ASTER Global Digital Elevation Model and Open Street Maps vector layers were used in the study. Correlation between these parameters and the actual fires in 2016-2018 was analyzed. Linear relationships were established, and correlation coefficients, equations of partial ratings and prevention 90%-threshold values were identified. On their basis, the parameter weights were computed to integrate them into the general fire danger rating. The developed method was validated using data over 2019. The results showed 67% confidence and 61% reliability of fire prevention along with the spatio-temporal patterns of fire danger factors. The method is recommended for preventing wildfires within the study areas and can be extend to similar regions.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3