Mapping Seagrass Percent Cover And Biomass In Nusa Lembongan, Bali, Indonesia

Author:

Br Ginting Devica Natalia1,Wicaksono Pramaditya1,Farda Nur Mohammad1

Affiliation:

1. Faculty of Geography, Gadjah Mada University

Abstract

Seagrass meadow is one of the blue-carbon ecosystems capable of absorbing and storing carbon more effectively in the bodies and sediments than terrestrial ecosystems. However, nationwide data on its carbon stock remains elusive due to limitations and challenges in data collection and mapping. Seagrass percent cover and biomass, which were closely related with above-ground carbon stock, can be effectively mapped and monitored using remote sensing techniques. Therefore, this study aimed to compare the accuracy of 4 scenarios as well as assess the performance of random forest and stepwise regression methods, for mapping seagrass percent cover and biomass in Nusa Lembongan, Bali, Indonesia. The scenarios were experimented using only atmospherically corrected images, sunglint, water, as well as sunglint and water column corrected images. Furthermore, WorldView-3 images and in-situ seagrass data were used, with the image corrected by applying the scenarios. Random forest and stepwise regression methods were adopted for mapping and modelling. The optimum mapping scenario and method were chosen based on R2, RMSE, and seagrass spatial distribution. The results show that the atmospherically corrected image produced the best seagrass percent cover and biomass map. Range of R2 using random forest and stepwise regression model was 0.49–0.64 and 0.50–0.58, with RMSE ranging from 18.50% to 21.41% and 19.36% to 20.72%, respectively. Based on R2, RMSE, and seagrass spatial distribution, it was concluded that the random forest model produced better mapping results, specifically for areas with high seagrass percent cover.

Publisher

Russian Geographical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3